诚信为本,市场在变,诚信永远不变...
  咨询电话:400-123-4567

行业新闻

【TensorFlow 入门】2、优化器函数 Optimizer

因为大多数机器学习任务就是最小化损失,在损失定义的情况下,后面的工作就交给了优化器。因为深度学习常见的是对于梯度的优化,也就是说,优化器最后其实就是各种对于梯度下降算法的优化。

一、常用的optimizer类

 

1. class tf.train.Optimizer
优化器(optimizers)类的基类。这个类定义了在训练模型的时候添加一个操作的API。你基本上不会直接使用这个类,但是你会用到他的子类比如GradientDescentOptimizer, AdagradOptimizer, MomentumOptimizer.等等这些。

操作描述
class tf.train.Optimizer基本的优化类,该类不常常被直接调用,而较多使用其子类,比如GradientDescentOptimizer, AdagradOptimizer或者MomentumOptimizer
tf.train.Optimizer.init(use_locking, name)创建一个新的优化器,该优化器必须被其子类(subclasses)的构造函数调用
tf.train.Optimizer.minimize(loss, global_step=None, var_list=None, gate_gradients=1, aggregation_method=None, colocate_gradients_with_ops=False, name=None, grad_loss=None)添加操作节点,用于最小化loss,并更新var_list该函数是简单的合并了compute_gradients()与apply_gradients()函数返回为一个优化更新后的var_list,如果global_step非None,该操作还会为global_step做自增操作
tf.train.Optimizer.apply_gradients(grads_and_vars, global_step=None, name=None)将计算出的梯度应用到变量上,是函数minimize()的第二部分,返回一个应用指定的梯度的操作Operation,对global_step做自增操作
tf.train.Optimizer.compute_gradients(loss,var_list=None, gate_gradients=1, aggregation_method=None, colocate_gradients_with_ops=False, grad_loss=None)对var_list中的变量计算loss的梯度该函数为函数minimize()的第一部分,返回一个以元组(gradient, variable)组成的列表

用法

 

二、注意事项:在使用它们之前处理梯度

使用minimize()操作,该操作不仅可以计算出梯度,而且还可以将梯度作用在变量上。如果想在使用它们之前处理梯度,可以按照以下三步骤使用optimizer :

1、使用函数compute_gradients()计算梯度
2、按照自己的愿望处理梯度
3、使用函数apply_gradients()应用处理过后的梯度

例如:

 

三、选通梯度

函数minimize() 与compute_gradients()都含有一个参数gate_gradient,用于控制在应用这些梯度时并行化的程度。

其值可以取:GATE_NONE, GATE_OP 或 GATE_GRAPH

GATE_NONE : 并行地计算和应用梯度。提供最大化的并行执行,但是会导致有的数据结果没有再现性。比如两个matmul操作的梯度依赖输入值,使用GATE_NONE可能会出现有一个梯度在其他梯度之前便应用到某个输入中,导致出现不可再现的(non-reproducible)结果
GATE_OP: 对于每个操作Op,确保每一个梯度在使用之前都已经计算完成。这种做法防止了那些具有多个输入,并且梯度计算依赖输入情形中,多输入Ops之间的竞争情况出现。
GATE_GRAPH: 确保所有的变量对应的所有梯度在他们任何一个被使用前计算完成。该方式具有最低级别的并行化程度,但是对于想要在应用它们任何一个之前处理完所有的梯度计算时很有帮助的。

2. class tf.train.GradientDescentOptimizer
实现梯度下降算法的优化器(仅需要输入“学习率”)

 

作用:创建一个梯度下降优化器对象
参数:
learning_rate: A Tensor or a floating point value. 要使用的学习率
use_locking: 要是True的话,就对于更新操作(update operations.)使用锁
name: 名字,可选,默认是”GradientDescent”.
compute_gradients(loss,var_list=None,gate_gradients=GATE_OP,aggregation_method=None,colocate_gradients_with_ops=False,grad_loss=None)

 

作用:对于在变量列表(var_list)中的变量计算对于损失函数的梯度,这个函数返回一个(梯度,变量)对的列表,其中梯度就是相对应变量的梯度了。这是minimize()函数的第一个部分,
参数:
loss: 待减小的值
var_list: 默认是在GraphKey.TRAINABLE_VARIABLES.
gate_gradients: How to gate the computation of gradients. Can be GATE_NONE, GATE_OP, or GATE_GRAPH.
aggregation_method: Specifies the method used to combine gradient terms. Valid values are defined in the class AggregationMethod.
colocate_gradients_with_ops: If True, try colocating gradients with the corresponding op.
grad_loss: Optional. A Tensor holding the gradient computed for loss.

 

作用:把梯度“应用”(Apply)到变量上面去。其实就是按照梯度下降的方式加到上面去。这是minimize()函数的第二个步骤。 返回一个应用的操作。
参数:
grads_and_vars: compute_gradients()函数返回的(gradient, variable)对的列表
global_step: Optional Variable to increment by one after the variables have been updated.
name: 可选,名字

 

作用:非常常用的一个函数
通过更新var_list来减小loss,这个函数就是前面compute_gradients() 和apply_gradients().的结合

3. class tf.train.AdadeltaOptimizer
实现了 Adadelta算法的优化器,可以算是下面的Adagrad算法改进版本

构造函数:

 

作用:构造一个使用Adadelta算法的优化器
参数:
learning_rate: tensor或者浮点数,学习率
rho: tensor或者浮点数. The decay rate.
epsilon: A Tensor or a floating point value. A constant epsilon used to better conditioning the grad update.
use_locking: If True use locks for update operations.
name: 【可选】这个操作的名字,默认是”Adadelta”

4. class tf.train.AdagradOptimizer

Optimizer that implements the Adagrad algorithm.

 

参数:
learning_rate: A Tensor or a floating point value. The learning rate.
initial_accumulator_value: A floating point value. Starting value for the accumulators, must be positive.
use_locking: If True use locks for update operations.
name: Optional name prefix for the operations created when applying gradients. Defaults to “Adagrad”.

The Optimizer base class provides methods to compute gradients for a loss and apply gradients to variables. A collection of subclasses implement classic optimization algorithms such as GradientDescent and Adagrad.

You never instantiate the Optimizer class itself, but instead instantiate one of the subclasses.

5.class tf.train.MomentumOptimizer
Optimizer that implements the Momentum algorithm.

 

参数:
learning_rate: A Tensor or a floating point value. The learning rate.
momentum: A Tensor or a floating point value. The momentum.
use_locking: If True use locks for update operations.
name: Optional name prefix for the operations created when applying gradients. Defaults to “Momentum”.

6. class tf.train.AdamOptimizer
实现了Adam算法的优化器

构造函数:

平台注册入口